258 research outputs found

    Parallel Evolution of Quasi-separatrix Layers and Active Region Upflows

    Get PDF
    Persistent plasma upflows were observed with Hinode's EUV Imaging Spectrometer (EIS) at the edges of active region (AR) 10978 as it crossed the solar disk. We analyze the evolution of the photospheric magnetic and velocity fields of the AR, model its coronal magnetic field, and compute the location of magnetic null-points and quasi-sepratrix layers (QSLs) searching for the origin of EIS upflows. Magnetic reconnection at the computed null points cannot explain all of the observed EIS upflow regions. However, EIS upflows and QSLs are found to evolve in parallel, both temporarily and spatially. Sections of two sets of QSLs, called outer and inner, are found associated to EIS upflow streams having different characteristics. The reconnection process in the outer QSLs is forced by a large-scale photospheric flow pattern which is present in the AR for several days. We propose a scenario in which upflows are observed provided a large enough asymmetry in plasma pressure exists between the pre-reconnection loops and for as long as a photospheric forcing is at work. A similar mechanism operates in the inner QSLs, in this case, it is forced by the emergence and evolution of the bipoles between the two main AR polarities. Our findings provide strong support to the results from previous individual case studies investigating the role of magnetic reconnection at QSLs as the origin of the upflowing plasma. Furthermore, we propose that persistent reconnection along QSLs does not only drive the EIS upflows, but it is also responsible for a continuous metric radio noise-storm observed in AR 10978 along its disk transit by the Nan\c{c}ay Radio Heliograph.Comment: 29 pages, 10 figure

    Self Heating of Corona by Electrostatic Fields Driven by Sheared Flows

    Full text link
    A mechanism of self-heating of solar corona is pointed out. It is shown that the free energy available in the form of sheared flows gives rise to unstable electrostatic waves which accelerate the particles and heat them. The electrostatic perturbations take place through two processes (a) by purely growing sheared flow-driven instability and (b) by sheared flow-driven drift waves. These processes occur throughout the corona and hence the self-heating is very important in this plasma. These instabilities can give rise to local electrostatic potentials φ\varphi of the order of about 100 volts or less within 3×1023\times10^{-2} to a few seconds time if the initial perturbation is assumed to be about one percent that is eφTe102\frac{e\varphi}{T_{e}}\simeq10^{-2}. The components of wave lengths in the direction perpendicular to external magnetic field B0\textbf{B}_{0} vary from about 10m to 1m. The purely growing instability creates electrostatic fields by sheared flows even if the density gradient does not exist whereas the density gradient is crucial for the concurrence of drift wave instability. Subject headings: Sun: self-heating of corona, sheared flow-driven instability, drift waves

    Diagnosing the time-dependence of active region core heating from the emission measure: I. Low-frequency nanoflares

    Get PDF
    Observational measurements of active region emission measures contain clues to the time-dependence of the underlying heating mechanism. A strongly non-linear scaling of the emission measure with temperature indicates a large amount of hot plasma relative to warm plasma. A weakly non-linear (or linear) scaling of the emission measure indicates a relatively large amount of warm plasma, suggesting that the hot active region plasma is allowed to cool and so the heating is impulsive with a long repeat time. This case is called {\it low-frequency} nanoflare heating and we investigate its feasibility as an active region heating scenario here. We explore a parameter space of heating and coronal loop properties with a hydrodynamic model. For each model run, we calculate the slope α\alpha of the emission measure distribution EM(T)TαEM(T) \propto T^\alpha. Our conclusions are: (1) low-frequency nanoflare heating is consistent with about 36% of observed active region cores when uncertainties in the atomic data are not accounted for; (2) proper consideration of uncertainties yields a range in which as many as 77% of observed active regions are consistent with low-frequency nanoflare heating and as few as zero; (3) low-frequency nanoflare heating cannot explain observed slopes greater than 3; (4) the upper limit to the volumetric energy release is in the region of 50 erg cm3^{-3} to avoid unphysical magnetic field strengths; (5) the heating timescale may be short for loops of total length less than 40 Mm to be consistent with the observed range of slopes; (6) predicted slopes are consistently steeper for longer loops

    Evolution and decay of an active region: Magnetic shear, flare and CME activity

    Get PDF
    Desde abril de 1996 y hasta febrero de 1997, se observó en el disco solar un complejo de actividad. Este complejo exhibió su nivel más alto de actividad durante el nacimiento de la región activa (AR) 7978. Nuestro análisis se extiende a lo largo de seis rotaciones solares, desde la aparición de AR 7978 (julio de 1996) hasta el decaimiento y dispersión de su flujo (noviembre de 1996). Los datos en varias longitudes de onda provistas por los instrumentos a bordo del Solar and heliospheric Observatory (SOHO) y del satélite japonés Yohkoh, nos permiten seguir la evolución de la región desde la fotosfera hasta la corona. Usando los magnetogramas del disco completo obtenidos por el Michelson Doppler Imager (SOHO/MDI) como condiciones de contorno, calculamos el campo magnético coronal y determinamos su apartamiento de la potencialidad ajustando las líneas de campo calculadas a los arcos observados en rayos X blandos. Discutimos la evolución de la torsión del campo magnético coronal y su probable relación con la actividad observada en forma de eyecciones de masa coronal (CMEs) y fulguraciones.An activity complex was observed on the solar disk between April, 1996 and February, 1997 that reached its highest level of activity during the birth of AR 7978. Our observations extend over six solar rotations, from the emergence of AR 7978 (July 1996) until the decay and dispersion of its flux (November 1996). Multi-wavelength observations, provided by instruments aboard the Solar and Heliospheric Observatory (SOHO) and the Japanese spacecraft Yohkoh, follow the evolution of the region from the photosphere to the corona. Using full disk magnetograms obtained by the Michelson Doppler Imager (SOHO/MDI) as boundary condition, we calculate the coronal magnetic field and determine its shear by fitting the computed field lines to the observed soft X-ray loops. We discuss the evolution of the coronal field shear and its probable relation to flare and coronal mass ejection activity.Fil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; ArgentinaFil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Thompson, B.. National Aeronautics And Space Administration; Estados UnidosFil: Plunkett, S. P.. Spece Sciences División. Naval Research Laboratory; Estados UnidosFil: Démoulin, Pascal. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Aulanier, G.. Centre National de la Recherche Scientifique. Observatoire de Paris; Franci

    A slow coronal mass ejection with rising X-ray source

    Get PDF
    An eruptive event, which occurred on 16th April 2002, is discussed. Using images from the Transition Region and Coronal Explorer (TRACE) at 195 Å, we observe a lifting flux rope which gives rise to a slow coronal mass ejection (CME). There are supporting velocity observations from the Coronal Diagnostic Spectrometer (CDS) on the Solar and Heliospheric Observatory (SOHO), which illustrate the helical nature of the structure. Additionally a rising coronal hard X-ray source, which is observed with the Reuven Ramaty High Energy Solar Spectroscopic Imager (RHESSI), is shown to follow the flux rope with a speed of ~60 km s-1. It is also sampled by the CDS slit, although it has no signature in the Fe XIX band. Following the passage of this source, there is evidence from the CDS for down-flowing (cooling) material along newly reconnected loops through Doppler velocity observations, combined with magnetic field modeling. Later, a slow CME is observed with the Large Angle and Spectroscopic Coronagraph (LASCO). We combine a height-time profile of the flux rope at lower altitudes with the slow CME. The rising flux rope speeds up by a factor of 1.7 at the start of the impulsive energy release and goes through further acceleration before reaching 1.5 solar radii. These observations support classical CME scenarios in which the eruption of a filament precedes flaring activity. Cusped flare loops are observed following the erupting flux rope and their altitude increases with time. In addition we find RHESSI sources both below and above the probable location of the reconnection region.Fil: Goff, C. P.. Mullard Space Science Laboratory; Reino UnidoFil: van Driel Gesztelyi, Lidia. Centre National de la Recherche Scientifique. Observatoire de Paris; FranciaFil: Harra, L. K.. Mullard Space Science Laboratory; Reino UnidoFil: Matthews, S. A.. Mullard Space Science Laboratory; Reino UnidoFil: Mandrini, Cristina Hemilse. Consejo Nacional de Investigaciónes Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Astronomía y Física del Espacio. - Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Astronomía y Física del Espacio; Argentin

    Homologous Flares and Magnetic Field Topology in Active Region NOAA 10501 on 20 November 2003

    Full text link
    We present and interpret observations of two morphologically homologous flares that occurred in active region (AR) NOAA 10501 on 20 November 2003. Both flares displayed four homologous H-alpha ribbons and were both accompanied by coronal mass ejections (CMEs). The central flare ribbons were located at the site of an emerging bipole in the center of the active region. The negative polarity of this bipole fragmented in two main pieces, one rotating around the positive polarity by ~ 110 deg within 32 hours. We model the coronal magnetic field and compute its topology, using as boundary condition the magnetogram closest in time to each flare. In particular, we calculate the location of quasiseparatrix layers (QSLs) in order to understand the connectivity between the flare ribbons. Though several polarities were present in AR 10501, the global magnetic field topology corresponds to a quadrupolar magnetic field distribution without magnetic null points. For both flares, the photospheric traces of QSLs are similar and match well the locations of the four H-alpha ribbons. This globally unchanged topology and the continuous shearing by the rotating bipole are two key factors responsible for the flare homology. However, our analyses also indicate that different magnetic connectivity domains of the quadrupolar configuration become unstable during each flare, so that magnetic reconnection proceeds differently in both events.Comment: 24 pages, 10 figures, Solar Physics (accepted

    Spectroscopic Observations of Hot Lines Constraining Coronal Heating in Solar Active Regions

    Full text link
    EUV observations of warm coronal loops suggest that they are bundles of unresolved strands that are heated impulsively to high temperatures by nanoflares. The plasma would then have the observed properties (e.g., excess density compared to static equilibrium) when it cools into the 1-2 MK range. If this interpretation is correct, then very hot emission should be present outside of proper flares. It is predicted to be vey faint, however. A critical element for proving or refuting this hypothesis is the existence of hot, very faint plasmas which should be at amounts predicted by impulsive heating. We report on the first comprehensive spectroscopic study of hot plasmas in active regions. Data from the EIS spectrometer on Hinode were used to construct emission measure distributions in quiescent active regions in the 1-5 MK temperature range. The distributions are flat or slowly increasing up to approximately 3 MK and then fall off rapidly at higher temperatures. We show that active region models based on impulsive heating can reproduce the observed EM distributions relatively well. Our results provide strong new evidence that coronal heating is impulsive in nature.Comment: ApJ, 2009, in pres

    Self-Organization of Reconnecting Plasmas to Marginal Collisionality in the Solar Corona

    Full text link
    We explore the suggestions by Uzdensky (2007) and Cassak et al. (2008) that coronal loops heated by magnetic reconnection should self-organize to a state of marginal collisionality. We discuss their model of coronal loop dynamics with a one-dimensional hydrodynamic calculation. We assume that many current sheets are present, with a distribution of thicknesses, but that only current sheets thinner than the ion skin depth can rapidly reconnect. This assumption naturally causes a density dependent heating rate which is actively regulated by the plasma. We report 9 numerical simulation results of coronal loop hydrodynamics in which the absolute values of the heating rates are different but their density dependences are the same. We find two regimes of behavior, depending on the amplitude of the heating rate. In the case that the amplitude of heating is below a threshold value, the loop is in stable equilibrium. Typically the upper and less dense part of coronal loop is collisionlessly heated and conductively cooled. When the amplitude of heating is above the threshold, the conductive flux to the lower atmosphere required to balance collisionless heating drives an evaporative flow which quenches fast reconnection, ultimately cooling and draining the loop until the cycle begins again. The key elements of this cycle are gravity and the density dependence of the heating function. Some additional factors are present, including pressure driven flows from the loop top, which carry a large enthalpy flux and play an important role in reducing the density. We find that on average the density of the system is close to the marginally collisionless value.Comment: accepted for publication in The Astrophysical Journal, 33 pages, 12 figure

    Progressive transformation of a flux rope to an ICME

    Full text link
    The solar wind conditions at one astronomical unit (AU) can be strongly disturbed by the interplanetary coronal mass ejections (ICMEs). A subset, called magnetic clouds (MCs), is formed by twisted flux ropes that transport an important amount of magnetic flux and helicity which is released in CMEs. At 1 AU from the Sun, the magnetic structure of MCs is generally modeled neglecting their expansion during the spacecraft crossing. However, in some cases, MCs present a significant expansion. We present here an analysis of the huge and significantly expanding MC observed by the Wind spacecraft during 9 and 10 November, 2004. After determining an approximated orientation for the flux rope using the minimum variance method, we precise the orientation of the cloud axis relating its front and rear magnetic discontinuities using a direct method. This method takes into account the conservation of the azimuthal magnetic flux between the in- and out-bound branches, and is valid for a finite impact parameter (i.e., not necessarily a small distance between the spacecraft trajectory and the cloud axis). Moreover, using the direct method, we find that the ICME is formed by a flux rope (MC) followed by an extended coherent magnetic region. These observations are interpreted considering the existence of a previous larger flux rope, which partially reconnected with its environment in the front. These findings imply that the ejected flux rope is progressively peeled by reconnection and transformed to the observed ICME (with a remnant flux rope in the front part).Comment: Solar Physics (in press
    corecore